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Dynamic spontaneous fluorescence in parametric wave coupling
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Intense waves, subject to a parametric exchange of energy in dispersive media may spontaneously emit
radiation at new frequencies. This effect represents a spatially dynamic version of parametric fluorescence with
a single pump beam. Enhancement of the scattering into new frequencies is predicted near homoclinic or
separatrix evolutions of the continuous-wave parametric processes. Examples of the decay of the coupled
waves are given for three- and four-photon interactip84063-651X%97)51105-9

PACS numbgs): 42.65.Yj, 03.40.Kf, 47.20-k, 52.35.Mw

Spontaneous parametric fluorescence denotes the decaytefaction length of parametric interactiong4]. As we shall
an intense beam through the parame(iie., the total energy see, the MI of periodically coupled wavés particularly
of the field is conserved, and the medium response is loca&nhanced in the vicinity of homoclinic evolutioribat are
and instantaneolisemission of sideband waves at fre- associated with saddle points in the phase space portrait de-
quencies w*=(Q set by the energy selection rule scribing the cw or homogeneous propagation.
20=(0+Q)+(0—Q) [1], or o+w=(0+Q)+(0—Q) Consider for example partially degenerate three-photon
[2]. The maximum decay rate occurs for the wave-numbefixing or SHG. The total electric field reads
matching or momentum conservatigie., ko, =ko+k_o  E(zt)=Eexpikiz—iwgt) + Exexp(kz—i2wgt), and SHG is
or 2k, =kqg+k_q, respectively, the bandwidth being gen- described by the coupled equations for the complex enve-
erally determined by the dispersion. Whenever the wavelopes uy=+2E;/\P and u,=E,/\P (P=|E|*+|E,|?)
vector matching condition is tuned by the pump intensity, thd 8,13]
parametric decay is also known as modulational instability
(MI), which is widespread in physi¢8—9]. Ml is observed du; SH® B1 3%, _
in fluids [5], optical dielectricd6], plasmaq7,8], electrical =1 a—§= st 2 F+U2Uf explix{),
circuits [9], and elastic wavef3]. Moreover, Ml is closely 1
related to the generation of solitons, which are the stable
eigenmodes of the dispersive propagation. It represents the _du, S6H®P
universal mechanism governing the transition from unstable I a—§= Su*
plane waves into stable solitons in nearly conservative physi- 2
cal systemg4].

On the other hand, the parametric mixing of two or morewhere the field HamiltonianH®=[*>H®dr [H()
intense waves is widespread in both quadratic or cubic non= uZu} exp(x{)/2+ c.c—=_1Bilu; /%2 is the density,
linear media. For instance, resonant wave interactjd® and the energy fluxQ=["2[|u,|*+|u,|?/2]d are con-
constitute a flexible means to generate new frequencies, irserved along the propagation coordingteln Egs. (1), the
cluding the frequency degenerate wave coupling as a practiimensionless units ae= Z/ZHIZZEO)((Z)\/E, @ being the
cally important cas¢11]. In analogy to a single wave, the second-order susceptibility, the retarded timwe (t—z/v)/
propagation of multiple intense waves will also be subject 0|k} |zyy, with B;=K!/|K}| (k'=d?k/dw?|,_;, are chro-
Ml in dispersive or diffractive nonlinear media. Through the . . N ) “=1% .

; o ; .matic dispersions and the wave-number mismatch
nonlinear susceptibility, the coupled waves introduce a peri-

. . . . KE(kz_Zkl)Zm.
odic modulation of the dielectric constant. As a result, new™ " . 4 example is four-photon mixing in a

frequencies are scattered off the initial beams. However, 'E)irefringent dielectric with cubic responsél5). The

appears that the MI of periodic parametric coupling has noé)olarization changes of the fielE=[xE,(z,1)exp(k,2)

been investigated yet. In fact, only the relatively simple cas > )
was considered when the waves do not exchange energy brq-tyEy(z,t)eprkyz)]exp( lagf) are represented by the co

simply induce a mutual nonlinear phase shift. For example, erently coupled nonlinear Scltiager equations for the en-

take two incoherently coupled waves in a cubic medium‘é‘?;’:p‘(eéxui%,izgyfé,)z(&\i/ixfliy)tgg] Pﬁ% circular polarizations

[12], or the nonlinear eigenmodes of second-harmonic gen-
eration(SHG) in a quadratic mediurm13].

B> Pu,  Uf .
7F+?EXK_IK§), (1)

The purpose of this Rapid Communication is to show that gu; SH® B J°u; Uz
coupled waves in nonlinear media are subject to the sponta- ! 9 sur | 2 or? T
neous scattering of energy into a spectrum of side modes. )
This effect providesa fundamental limit to the effective in- +2p(|Juj]?+ofuz_;[Pu;, j=1and 2. (2)
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p>0.5. As shown by Fig. (b), a figure-of-eight separatrix
@ splits the phase plane into three domains of periodic orbits
about stable centers.

By definition, the spatially stablécenter$ or unstable

=
g ) ( (saddley eigenmodes of the cw dynamics do not lead to
§ energy transfer between the waves. Instead, we are interested
here in studying the MI's of parametrically coupled waves,
@ that is, of the periodic solutions of Eq®8)—(5). This is done
9 5 1 > by inserting in Eqs(1) and (2) the fields
angle ¥ (units of m) angle v (units of )

U= (O +a(d n]exdigi({)], j=1and2, (6)
FIG. 1. Phase-space portraits of the stationary Hamiltonian in

(@) quadratic =0.5) or(b) cubic media p=0.8). where 7;=[u;]?, and the perturbing terms are taken of the
form a;(£,7)=€s(0) €+ €a(L)e ', In SHG, we set

Here (=2wz/z,, z,=2nllk,—k,|, and 7=(27/  ¢;=¢; andd,=¢,—«{. From Egs(1), after linearizing in

|Ki|zp) " YAt—2z/v), B=K'IK"| (where v '=dk.,/ the perturbing terms, we obtain

doly- 0y, and k’=dk,,/dw?,-,), and p is a dimen-

sionless power [e.g., for an optical fiber p _-aElsz 0. _ iy _* — i
=47n,P/(3AgNolky—Ky|), Ny is the nonlinear indexA.x I 74 [0 = Vcosplerst ne Vel + V2(1= me ez
is the effective area, and the cross-phase modulation 7)
coefficiento=2 [16]]. The Hamiltonian density associated

with Egs. (2) H®=—3,_; B8lu; |22+ 3(Jug*+|u,|?) dexs | — l1—7 »
+p[|u1|4+|u2|4+a|u1|2|u2(2], and the conserved photon 1= 0= TnCOSP €25t V2(1—n)e Ve,

flux is Q=[7Z|us|?+|uy/?d7. In Egs.(1) and (2), we ne-
glected, for the sake of simplicity, the group-velocity walk- a_ 2 . :
off terms between the coupled waves; the present analys}ghereﬂﬁ._f {2 25 Eq.uat||0ns{b7) cou dplt? to thg quatloEn s for
can be easily extended to include those terms. Equatihns €12a» WNich may be simply obtained by conjugating .
and(2) also apply to describe M due to wave coupling with Under the exchange—a. A similar procedure can be ap-
diffraction in one dimensionA representing a spatial trans- Plied to Egs.(2) with ¢;=¢;, and yields

verse coordinade which is the object of recent experiments 5

[17]. %8s | o _Ni=7 N
The stationary dynamicé.e., d/dr=0) of Egs.(1) and Y Qytp(1+7) 2(1+ n)coap €15 P(1+ 7)€l
(2) is integrable by quadratures. Expli¢iperiodic solutions oiv
for u; ,=uy y(¢) are obtained in terms of the trajectories of i T T
the reduced equivalent one-dimensional anharmonic oscilla- o 7 (€2at €29+ 5 €2s,
tor for the action-angle variables, i, (8)
dp oH!™ dy  gH™ ger. [ e
—=——, —=———, m=2and 3. 3 8 _ - *
az - oy dC s @ i o7 = |t Pt m) 5 seosy|elat p(1+ M€
In SHG, u;=\2(1-7n)exp(ey), Uz=1nexp(¢,—iL), 5 e’
(where[Uy|/2+[U;|?=1), Y= b, ~ 2y, and FPOVL= (€t €20+ 5 2a
HEZ):Hﬁz)(”’¢):K”+2\r’7(1_ 7)C0S}. (4 The above equations are coupled to similar expressions for
N . . T
In the case of the vector nonlinear Satlirer equations2), Z}Zia_n?;za’ obtained from Eqs(8) with 12, »— =, and
we setuy ;= V(1 7)/2expi¢y.2), and obtain The perturbation equation&) and (8) are of the form
H®=HO) (5, 4) = — py?+1— n2cosy, (5) €=M({)e, wheree=(eys, €7, €25, €52) T (T denotes trans-

position), and M=M({) is a periodic (with period, say,
where the action n=[uj|®~[uy|® and the angle {p) 4X4 coefficient matrix associated with a given trajec-
= ¢1— ¢,. The phase portraits of the reduced systéBys  tory of the cw coupling process. The stability analysis of
(5) exhibit the spatially stable and unstable eigenmodes gperiodic linear ordinary differential equations is well known,
the coupling proces$15,18. As shown by Fig. (@ for  and is based on the evaluation of the critical exponents ac-
SHG, Eq.(4) yields that for|x|<2 a separatri{which is  cording to Floquetor Bloch theorem[3]. These exponents
homoclinic to the saddlg¢ »=1,=+cos ¥(«/2)]) divides are obtained from the %4 principal solution matrix, say
the phase plane into two domains of periodic orkite do- S={e)({p), j=1, 2, 3, and 4, which represents the evalu-
main >1 is not physically accessibleThese domains are ation at{= {p of the independent set of solutioe)({p) of
centered around two different phase-lockéide., with  the linear periodic system. These solutions correspond to the
=0,) elliptic eigenmodes. In the case of Hamiltoni@, initial conditions S({=0)=I1=diag1}. The eigenvalues
the eigenmode witly=0 andy= 7 is an unstable saddle for A=exp(u+ip) of S such that|]\|>1 lead to the amplifica-
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when the seed frequency detuning is chosen outside the lin- 1
ear Ml gain bandwidth(i.e., Q=3). As can be seen, the Jus ? - .

spatial evolution of the fundamental remains close to the s
unperturbed near-separatrix trajectory of the cw picture.
Conversely, Figs. ®)—3(c) show that, whenever the pertur-
bation frequency is close to the peak spectral gae, for

QO =1), the growth of the side mod&nd its harmonigs
leads to the complete decay from the cw trajectory. This
occurs even before that any back-conversion of the second
harmonic wave into the fundament@t the end of the first
period of the cw evolutionhas ever taken place. For longer
interaction distances, a cascade of higher-order sideband
pairs is observed. One may then conclude that the maximum,;
length for observing periodic energy conversion in dispersive o]
guadratic medidin particular close to phase matching, i.e., °

for k=0), is fundamentally limited by the parametric scat- ¢
tering introduced byMlI.

A similar statement also applies to four-photon processes.
Figure 4 shows the spatial evolution of power in the right- (b)

circularu, mode, as it is obtained from the numerical solu-

tion of Egs.(2) with u;(0)=1, u,(0)=0 (8=1, 0=2). In i

Fig. 4(a) [4(b)], p is slightly below(above the critical value 2 10

p:]_ that leads to a homoclinip .t.rajeCtory for the pOIariza' FIG. 4. Evolution of left-circular intensityju,|2 with right-

tion state. As can be seen, the initial stage of the evolution of _ o4 input and a seed with=0.9: (a) rotation forp=0.95 and

thg circular polanzat!on component.|s e|.ther a complgte r0%=1.25p: (b) oscillation forp=1.05 and=2.5p . Insets show

tation[see Fig. 4a) with p=0.95, which gives the polariza- ¢y |u,|? (solid) and|u,|? (dashed evolutions.

tion coupling period{p=10.4] or a libration with halved

period[Fig. 4(b), p=1.05, {p=4.9]. The period doubling is mechanism of instability for parametrically coupled waves,

associated with the crossing of the separatrix trajectory athat periodically exchange energy in conservative dispersive

p=1 [see Fig. 1b)]. However, Fig. 4 clearly shows that the nonlinear media. Our results are valid for a generic resonant

build-up of unstable side modes draws a substantial amountave coupling(including the degenerate cageand can be

of energy from both polarization components of the field,applied to a variety of physical systems. These instabilities

which results in the effective depolarization of the intenseare particularly enhanced for any initial condition in the vi-

beam in long-range evolutions. cinity of the separatrices associated with the cw or homoge-
In summary, we have shown that Ml provides a generaheous dynamics.
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