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Dynamic spontaneous fluorescence in parametric wave coupling
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Intense waves, subject to a parametric exchange of energy in dispersive media may spontaneously emit
radiation at new frequencies. This effect represents a spatially dynamic version of parametric fluorescence with
a single pump beam. Enhancement of the scattering into new frequencies is predicted near homoclinic or
separatrix evolutions of the continuous-wave parametric processes. Examples of the decay of the coupled
waves are given for three- and four-photon interactions.@S1063-651X~97!51105-6#

PACS number~s!: 42.65.Yj, 03.40.Kf, 47.20.2k, 52.35.Mw
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Spontaneous parametric fluorescence denotes the dec
an intense beam through the parametric~i.e., the total energy
of the field is conserved, and the medium response is lo
and instantaneous! emission of sideband waves at fr
quencies v6V set by the energy selection ru
2v5(v1V)1(v2V) @1#, or v1v5(v1V)1(v2V)
@2#. The maximum decay rate occurs for the wave-num
matching or momentum conservation~i.e., k2v5kV1k2V

or 2kv5kV1k2V , respectively!, the bandwidth being gen
erally determined by the dispersion. Whenever the wa
vector matching condition is tuned by the pump intensity,
parametric decay is also known as modulational instab
~MI !, which is widespread in physics@3–9#. MI is observed
in fluids @5#, optical dielectrics@6#, plasmas@7,8#, electrical
circuits @9#, and elastic waves@3#. Moreover, MI is closely
related to the generation of solitons, which are the sta
eigenmodes of the dispersive propagation. It represents
universal mechanism governing the transition from unsta
plane waves into stable solitons in nearly conservative ph
cal systems@4#.

On the other hand, the parametric mixing of two or mo
intense waves is widespread in both quadratic or cubic n
linear media. For instance, resonant wave interactions@10#
constitute a flexible means to generate new frequencies
cluding the frequency degenerate wave coupling as a pr
cally important case@11#. In analogy to a single wave, th
propagation of multiple intense waves will also be subjec
MI in dispersive or diffractive nonlinear media. Through th
nonlinear susceptibility, the coupled waves introduce a p
odic modulation of the dielectric constant. As a result, n
frequencies are scattered off the initial beams. Howeve
appears that the MI of periodic parametric coupling has
been investigated yet. In fact, only the relatively simple c
was considered when the waves do not exchange energ
simply induce a mutual nonlinear phase shift. For exam
take two incoherently coupled waves in a cubic medi
@12#, or the nonlinear eigenmodes of second-harmonic g
eration~SHG! in a quadratic medium@13#.

The purpose of this Rapid Communication is to show t
coupled waves in nonlinear media are subject to the spo
neous scattering of energy into a spectrum of side mo
This effect providesa fundamental limit to the effective in
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teraction length of parametric interactions@14#. As we shall
see, the MI of periodically coupled wavesis particularly
enhanced in the vicinity of homoclinic evolutions, that are
associated with saddle points in the phase space portrai
scribing the cw or homogeneous propagation.

Consider for example partially degenerate three-pho
mixing or SHG. The total electric field read
E(z,t)5E1exp(ik1z2iv0t)1E2exp(ik2z2i2v0t), and SHG is
described by the coupled equations for the complex en
lopes u15A2E1 /AP and u25E2 /AP (P[uE1u21uE2u2)
@8,13#
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where the field HamiltonianH (2)5*2`
1`H(2)dt @H(2)

5u1
2u2* exp(ikz)/21c.c.—( j51,2b j uuj ,tu2/2 is the density#,

and the energy fluxQ5*2`
1`@ uu2u21uu1u2/2#dt are con-

served along the propagation coordinatez. In Eqs. ~1!, the
dimensionless units arez[z/znl5ze0x

(2)AP, x (2) being the
second-order susceptibility, the retarded timet[(t2z/v)/
Auk19uznl, with b j[kj9/uk19u (kj95d2k/dv2uv5 jv0

are chro-
matic dispersions! and the wave-number mismatc
k[(k222k1)znl .

A second example is four-photon mixing in
birefringent dielectric with cubic response@15#. The
polarization changes of the fieldE5@xEx(z,t)exp(ikxz)
1yEy(z,t)exp(ikyz)#exp(2iv0t) are represented by the co
herently coupled nonlinear Schro¨dinger equations for the en
velopes u1,25E1,2/AP of the two circular polarizations
E1,25(Ex6 iEy)exp@i(kx1ky)z/2# @16#,

2 i
]uj
]z

5
dH ~3!

duj*
52

b

2

]2uj
]t2

1
u32 j

2

12p~ uuj u21suu32 j u2!uj , j51 and 2. ~2!
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Here z[2pz/zb , zb52p/uky2kxu, and t5(2p/
uk19uzb)

21/2(t2z/v), b5k9/uk9u ~where v215dkx,y /
dvuv5v0

, and k95d2kx,y /dv2uv5v0
), and p is a dimen-

sionless power @e.g., for an optical fiber p
54pn2P/(3Aeffl0uky2kxu), n2 is the nonlinear index,Aeff
is the effective area, and the cross-phase modula
coefficients52 @16##. The Hamiltonian density associate
with Eqs. ~2! H(3)52( j51,2buuj ,tu2/21 1

2(uu1u21uu2u2)
1p@ uu1u41uu2u41suu1u2uu2u2#, and the conserved photo
flux is Q5*2`

1`uu1u21uu2u2dt. In Eqs. ~1! and ~2!, we ne-
glected, for the sake of simplicity, the group-velocity wal
off terms between the coupled waves; the present ana
can be easily extended to include those terms. Equation~1!
and~2! also apply to describe MI due to wave coupling wi
diffraction in one dimension (t representing a spatial trans
verse coordinate!, which is the object of recent experimen
@17#.

The stationary dynamics~i.e., ]/]t50) of Eqs.~1! and
~2! is integrable by quadratures. Explicitz-periodic solutions
for u1,2[ū1,2(z) are obtained in terms of the trajectories
the reduced equivalent one-dimensional anharmonic osc
tor for the action-angle variablesh,c,

dh

dz
5

]Hr
~m!

]c
,
dc

dz
52

]Hr
~m!

]h
, m52 and 3. ~3!

In SHG, ū15A2(12h)exp(if1), ū25Ahexp(if22ikz),
~whereuū1u2/21uū2u251), c5f222f1, and

Hr
~2!5Hr

~2!~h,c!5kh12Ah~12h!cosc. ~4!

In the case of the vector nonlinear Schro¨dinger equations~2!,
we setū1,25A(16h)/2exp(if1,2), and obtain

Hr
~3!5Hr

~3!~h,c!52ph21A12h2cosc, ~5!

where the action h5uū1u22uū2u2 and the angle
c5f12f2. The phase portraits of the reduced systems~3!–
~5! exhibit the spatially stable and unstable eigenmodes
the coupling process@15,18#. As shown by Fig. 1~a! for
SHG, Eq.~4! yields that foruku,2 a separatrix„which is
homoclinic to the saddle@h51,c56cos21(k/2)#… divides
the phase plane into two domains of periodic orbits~the do-
mainh.1 is not physically accessible!. These domains are
centered around two different phase-locked~i.e., with
c50,p) elliptic eigenmodes. In the case of Hamiltonian~5!,
the eigenmode withh50 andc5p is an unstable saddle fo

FIG. 1. Phase-space portraits of the stationary Hamiltonian
~a! quadratic (k50.5) or ~b! cubic media (p50.8).
n

is

a-

of

p.0.5. As shown by Fig. 1~b!, a figure-of-eight separatrix
splits the phase plane into three domains of periodic or
about stable centers.

By definition, the spatially stable~centers! or unstable
~saddles! eigenmodes of the cw dynamics do not lead
energy transfer between the waves. Instead, we are intere
here in studying the MI’s of parametrically coupled wave
that is, of the periodic solutions of Eqs.~3!–~5!. This is done
by inserting in Eqs.~1! and ~2! the fields

uj5@Ah j~z!1aj~z,t!#exp@ i f̄ j~z!#, j51 and 2, ~6!

whereh j5uū j u2, and the perturbing terms are taken of t
form aj (z,t)5e js(z)e

iVt1e ja(z)e
2 iVt. In SHG, we set

f̄15f1 andf̄25f22kz. From Eqs.~1!, after linearizing in
the perturbing terms, we obtain

2 i
]e1s
]z

5@V̄12Ahcosc#e1s1Aheice1a* 1A2~12h!eice2s,

~7!

2 i
]e2s
]z

5F V̄22
12h

Ah
coscGe2s1A2~12h!e2 ice1s ,

whereV̄j[b jV
2/2. Equations~7! couple to the equations fo

e1,2a* , which may be simply obtained by conjugating Eqs.~7!
under the exchanges↔a. A similar procedure can be ap
plied to Eqs.~2! with f̄ j5f j , and yields

2 i
]e1s
]z

5F V̄11p~11h!2
A12h2

2~11h!
coscGe1s1p~11h!e1a*

1psA12h2~e2a* 1e2s!1
e2 ic

2
e2s ,

~8!

i
]e1a*

]z
5F V̄11p~11h!2

A12h2

2~11h!
coscGe1a* 1p~11h!e1s

1psA12h2~e2a* 1e2s!1
eic

2
e2a* .

The above equations are coupled to similar expressions
e2s ande2a* , obtained from Eqs.~8! with 1↔2,h→2h, and
c→2c.

The perturbation equations~7! and ~8! are of the form
ė5M (z)e, wheree5(e1s ,e1a* ,e2s ,e2a* )

T (T denotes trans-
position!, and M5M (z) is a periodic ~with period, say,
zP) 434 coefficient matrix associated with a given traje
tory of the cw coupling process. The stability analysis
periodic linear ordinary differential equations is well know
and is based on the evaluation of the critical exponents
cording to Floquet~or Bloch! theorem@3#. These exponents
are obtained from the 434 principal solution matrix, say
S[$e( j )(zP), j51, 2, 3, and 4%, which represents the evalu
ation atz5zP of the independent set of solutionse( j )(zP) of
the linear periodic system. These solutions correspond to
initial conditions S(z50)5I5diag$1%. The eigenvalues
l[exp(m1ir) of S such thatulu.1 lead to the amplifica-
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tion of a small perturbation@3#. Hence the coupled cw’s ar
unstable with respect to the growth of sidebands with
detuningV. The growth rate of the unstable sidebands
given byg[2 lnulu/zP . In the special case where the cw
homogeneous solutions are close to a stable eigenmode~el-
liptic point! of Eqs. ~3!–~5!, ulu→exp(m) and the critical
exponent yields the MI gaing52m/zP , zP being the period
for small oscillations about the fixed point.

We select as specific examples the stability of parame
mode coupling with initial conditions involving the excita
tion of theu1 mode only. In the first case considered he
this input leads to the usual SHG from the fundamental@14#,
whereas the linear coupling leads to a periodic energy tra
fer between the two circular waves@15#. For the calculation
of the critical exponents of the perturbation equations,
explicit solutions of Eqs.~3! should be entered inM (z). In
the case of SHG, the first of Eqs.~3! yields
h(z)5c31(c22c3)sn

2(gzuk), where the period
zP52K(k)/Ac12c3, andc1.c2.c3 are implicitly defined
by the algebraic equation (h2c1)(h2c2)(h2c3)5h3

2(21k2/4)h21(11kHr)h2Hr
2/4,k25(c22c3)/(c12c3),

g5Ac12c3. When the SH is generated without initia

FIG. 2. MI gaing vs frequencyV, for ~a! a quadratic medium
with k50.5 ~dotted!, 0.1 ~dashed!, 1024 ~solid!, or ~b! a cubic
medium withp50.6 ~dotted!, 0.95 ~dashed!, and 1.05~solid!.
e
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seeding, the above expression simplifies (c350). The sec-

ond of Eqs. ~3! reads ċ5(k/2)@11c2sn
2(Ac1zuk)#/@1

2c2sn
2(Ac1zuk)#, which can be solved by means of the i

complete elliptic integral of the third kind in the so-calle
circular case@19#. Figure 2~a! shows the resulting instability
growth rateg5g(V), for three different choices ofk. As
can be seen, whenever the mismatchk is chosen so that the
trajectory in the (h,c) plane is in the vicinity of the separa
trix ~this is obtained fork50 with h50), the MI gain is
enhanced. Note also that the MI growth rate for scatter
into side modes with a finite frequency shiftV is always
larger than the cw gain~for V50).

For polarization coupling~5!, the initial u1 mode is rep-
resented byh(z50)51: this condition is homoclinic to the
unstable saddle in Fig. 1~b! for p51. Otherwise, the solution
of Eqs.~5! involves either polarization rotations forp,1, or
polarizations oscillations forp.1 @see Fig. 1~b!#. In the first
case, Eqs. ~3! and ~5! yield h5cn(zuk), and
c5tan21@dn(pzuk)/„psn(zuk)…#, with a periodzP54K(k)
and k25p2, whereas, in the latter cas
h5dn(pzuk), c5tan21@cn(pzuk)/sn(zuk)#, and the period
is zP52K(k)/p, with k25p22. Note that
zP(p→11)→2zP(p→12). As shown by Fig. 2~b!, again
the side modes gain is enhanced forp→1, that is, whenever
the separatrix is approached.

The predictions of the linear stability analysis are w
confirmed by the full numerical solutions~by the so-called
split-step method! of Eqs. ~1! and ~2!, with the
weakly perturbed initial conditionsu1,2(z50,t)5ū1,2(0)
1e1,2cos(Vt). We set the initial sideband seede1,251024 to
reduce the length scale for the development of the MI. Si
lar results are obtained with a broadband white noise se
Figure 3 corresponds to SHG@ ū1(0)5A2, ū2(0)50# close
to phase matching (k51024). Figure 3~a! shows the inten-
sity evolution is fundamental over three periods (z53zP),
FIG. 3. Field evolution in
SHG with h(0)50, k51024,
and normal dispersion (b1,251):
~a! intensity uu1u2 for V53, out-
side the MI gain bandwidth.~b!
Same as~a! for the peak gain de-
tuningV.1. ~c! Same as~b! for
uu2u2.
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when the seed frequency detuning is chosen outside the
ear MI gain bandwidth~i.e., V53). As can be seen, th
spatial evolution of the fundamental remains close to
unperturbed near-separatrix trajectory of the cw pictu
Conversely, Figs. 3~b!–3~c! show that, whenever the pertu
bation frequency is close to the peak spectral gain~i.e., for
V.1), the growth of the side mode~and its harmonics!
leads to the complete decay from the cw trajectory. T
occurs even before that any back-conversion of the sec
harmonic wave into the fundamental~at the end of the first
period of the cw evolution! has ever taken place. For long
interaction distances, a cascade of higher-order sideb
pairs is observed. One may then conclude that the maxim
length for observing periodic energy conversion in dispers
quadratic media~in particular close to phase matching, i.e
for k.0), is fundamentally limited by the parametric sca
tering introduced byMI.

A similar statement also applies to four-photon process
Figure 4 shows the spatial evolution of power in the rig
circular u2 mode, as it is obtained from the numerical so
tion of Eqs.~2! with ū1(0)51, ū2(0)50 (b51, s52). In
Fig. 4~a! @4~b!#, p is slightly below~above! the critical value
p51 that leads to a homoclinic trajectory for the polariz
tion state. As can be seen, the initial stage of the evolutio
the circular polarization component is either a complete
tation @see Fig. 4~a! with p50.95, which gives the polariza
tion coupling periodzP510.4# or a libration with halved
period@Fig. 4~b!, p51.05, zP54.9#. The period doubling is
associated with the crossing of the separatrix trajectory
p51 @see Fig. 1~b!#. However, Fig. 4 clearly shows that th
build-up of unstable side modes draws a substantial am
of energy from both polarization components of the fie
which results in the effective depolarization of the inten
beam in long-range evolutions.

In summary, we have shown that MI provides a gene
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mechanism of instability for parametrically coupled wave
that periodically exchange energy in conservative dispers
nonlinear media. Our results are valid for a generic reson
wave coupling~including the degenerate cases!, and can be
applied to a variety of physical systems. These instabilit
are particularly enhanced for any initial condition in the v
cinity of the separatrices associated with the cw or homo
neous dynamics.

FIG. 4. Evolution of left-circular intensityuu2u2 with right-
handed input and a seed withV50.9: ~a! rotation forp50.95 and
z51.25zP ; ~b! oscillation forp51.05 andz52.5zP . Insets show
cw uu1u2 ~solid! and uu2u2 ~dashed! evolutions.
.
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